I. Studies on Aerosol Puffers: Pheromone Load and Male Upwind Attraction

Stephen Welter, Dani Casado, Frances Cave University of California Berkeley

II. Efficacy of Modified Pheromone Application Methods For Codling Moth Management in Walnuts

Stephen Welter, Frances Cave, Dani Casado, Joe Grant and Carolyn Pickel

I. Studies on Aerosol Puffers: Pheromone Load and Male Upwind Attraction

Goals:

- Increase efficiency and reduce cost of the pheromone mating disruption system
 - Examine reduced load puffer emissions on plumes
 - Compare active vs passive release systems
 - Evaluate attraction of CM males to a puffer

Pheromone rates (puffers)

Previous work suggested

- plume larger than deployment rate
- redundancy in amount of pheromone?
- reduced pheromone loads possible?

-Plume overlap: plot separation

-Patchy CM populations: Sterile Insect Releases (SIR)

Methods: Puffer load rates

- 1. Sites: 2 walnut, 2 pear
- 2. Trap grid of 56 to 72 traps (1x-baited)
- 3. 6 SIR releases per site: 400 males released 30-40 ft downwind of <u>each</u> trap
- 4. <u>Six</u> treatments (each site):
 - a) Control (no pheromone)
 - b) Puffer @ 10% standard load
 - c) Puffer @ 25% standard load
 - d) Puffer @ 50% standard load
 - e) Puffer @ 100% standard load
 - f) 40 Isomate CM-Rings (single point cluster)
- 5. Data analyses by geostatistical modeling: kriging surfaces and conditional simulation

Big Valley:

- Pear.

- 56 traps @ 7-8 feet.
- Size: 8.6 acres.

Burger:

- Pear.

- 64 traps @ 7-8 feet.
- Size: 11.9 acres.

Dondero:

- Walnut.
- 72 traps @ 12-15 feet.
- Size: 13.8 acres.

Podesta:

- Walnut.
- 72 traps @ 12-15 feet.
- Size: 15.2 acres.

Controls (no pheromone): - Homogeneous release, but not recapture

Reasons:

- Upwind movement
- Heterogeneity within and among orchards (canopy structure, etc.)

Pear – Big Valley

Walnut – Dondero

Walnut – Podesta

Average trap suppression (%) in 1,000 simulations

Conclusions

- 1. No clear rate response
- Lower rates of aerosol emissions may as effective as full 100% load (current standard)
 - a) Higher variation has been noted for the lower emission rates (1 and 10%)
- 3. Can a different implementation model be developed ?
 - a) improve performance
 - b) reduce overall costs
 - i. e.g. is 25% load rate possible?
 - ii. (cabinet cost remains constant)

Upwind movement of CM males

Hypothesis:

CM males are attracted upwind over long distances to puffers due to a "super-female effect".

- 2010 used a protein-marking technique \rightarrow results not clear
- 2011 long-distance movement with and without pheromone
 - Treatments: puffer vs no puffer (control)
 - compared trap capture of Sterile Males (SIR)

Experiment 2: Upwind movement

Methods: CM Male Movement

- 1. Site: 17-acre pear orchard (delta)
- 2. Traps (1x-baited):
 - 1. 6-trap cluster 500 ft upwind of SIR
- 3. SIR releases (6 total)
 - 1. 10,000 males /SIR, single point release
- 4. Two treatments (alternating in time):
 - a) Control (no pheromone) 3 replicates
 - b) full rate CM-Puffer 3 replicates
- 5. Data analysis
 - 1. Captures/day were log transformed: ln(x+1)
 - 2. Analyzed by linear mixed effects model:
 - 1. date and trap as random effects;
 - 2. puffer/no puffer as fixed effect.

Results: CM Male Movement

- 1. CM males move upwind
- 2. Captures similar puffer vs control
 - a) Puffer: ave = 2.14 males/trap/day
 - b) Control: ave = 1.68 males/trap/day
 - c) Higher variability in Puffer SE 1.0 vs. 0.32
- 3. No significant difference between treatmentsa) L-ratio= 0.481; df= 1; p= 0.488
- Results do not support long distance attraction towards puffers

Conclusions: Pheromone Load and Male Upwind Attraction

- Differences among puffer pheromone rates were low, but large variability observed across sites
 - <u>all</u> rates showed trap suppression in large areas
 - reduction of the pheromone load seems possible
 - efficacy trials warranted
- >passive emitters (rings) showed less trap suppression
 - aerosol and passive emissions may behave differently
- Long distance attraction of CM males towards puffers not observed in these trials

II. Efficacy of Modified Pheromone Application Methods For Codling Moth Management in Walnuts

2011 Projects

- Low emission-rate puffer (50% ai of standard Checkmate CM Puffer)
- New aerosol emitter (Isomate CM "Mist")
- Modified hand-applied dispensers (Suterra Meso or Isomate Ring)

50% ai Checkmate CM Puffer

- 1 unit per 2 acres
- Monitor CM flight Combo and 1x lures
- CM damage at harvest
- 3 trial sites

2011 Walnuts: 50%-Rate Suterra Puffer Average Season Total Trap Capture and Percent Shutdown of 1x Traps

Results: Trapping

- Two sites with strong CM populations
- 1x trap shutdown 100% in one site

Results: Damage (two sites evaluated)

• Damage reduced 22% and 75% from Grower Standards

Isomate CM Mist Sprayer

- Emissions similar to Checkmate Puffer
- 1 unit per acre
- Monitor CM flight Combo and 1x lures
- CM damage at harvest
- 2 trial sites

2011 Walnuts: Isomate CM Mist Trial Codling Moth Damage at Harvest

Average Season Total Trap Capture and Percent Shutdown of 1x Traps

2011 Walnuts: Isomate CM Mist Sprayer

Lure Type and Trial Site

N. Glenn

Combo[®] Lure

Riverbank

Results: Trapping

N. Glenn

1x Lure

Number of Codling Moth / Trap

0

Two sites with strong CM populations

Riverbank

• 1x trap shutdown 100%

Results: Damage

• Damage reduced @ 50% from Grower Std.

Modified hand-applied dispensers

Methods:

- Suterra Meso @ 18 units/acre
- Isomate Ring @ (2x20) units/acre
- Pheromone Standard @ 200 units/acre
- 6 trial sites (Welter, Grant, Pickel)
- Monitor CM flight Combo and 1x lures
- CM damage at harvest

Results : Trapping

- flight curve example at Waterford CA walnut site
- Very high CM population
- Combo-baited traps show widely dispersed population across treatments
- 1x-traps mostly shut down entire season

Modified hand-applied dispensers: trap totals

- Significant populations across most sites
- 1x traps in pheromone treatments shut down average >98.9%
- No observed difference between pheromone treatments

Modified hand-applied dispensers: Damage at Harvest

2011 Walnuts: Codling Moth Damage at Harvest Modified Dispenser Efficacy Trials (Suterra Membrane, Isomate Ring)

Modified hand-applied dispensers: Damage at Harvest (multiple years)

Increasing replication across years and sites continues to indicate the modified hand-applied dispensers offer similar control to traditional pheromone dispensers

Conclusions

- Initial trials of a 50% reduced load puffer indicate positive results (damage, 1x shutdown)
- Modified hand-applied dispensers offer viable pheromone option for walnut growers
 - Best use may be smaller blocks (<40 acre) or sites with dimensions not suitable for puffer applications
- > New products continue to be developed
- Growers will see more opportunities for pheromonebased management systems

General Comments

- Pheromone MD program has been developed which works when:
 - Combined with insecticides in early years
 - \succ Target population management \rightarrow long term goal
 - Isolation from outside sources
- Need a robust program to achieve broad adoption
- New competition in the aerosol based MD systems

